Using ERDS to infer copy-number variants in high-coverage genomes

Am J Hum Genet. 2012 Sep 7;91(3):408-21. doi: 10.1016/j.ajhg.2012.07.004. Epub 2012 Aug 30.

Abstract

Although there are many methods available for inferring copy-number variants (CNVs) from next-generation sequence data, there remains a need for a system that is computationally efficient but that retains good sensitivity and specificity across all types of CNVs. Here, we introduce a new method, estimation by read depth with single-nucleotide variants (ERDS), and use various approaches to compare its performance to other methods. We found that for common CNVs and high-coverage genomes, ERDS performs as well as the best method currently available (Genome STRiP), whereas for rare CNVs and high-coverage genomes, ERDS performs better than any available method. Importantly, ERDS accommodates both unique and highly amplified regions of the genome and does so without requiring separate alignments for calling CNVs and other variants. These comparisons show that for genomes sequenced at high coverage, ERDS provides a computationally convenient method that calls CNVs as well as or better than any currently available method.

Publication types

  • Comparative Study
  • Research Support, American Recovery and Reinvestment Act
  • Research Support, N.I.H., Extramural

MeSH terms

  • Algorithms
  • DNA Copy Number Variations*
  • Gene Deletion
  • Genome, Human*
  • Genotyping Techniques
  • Humans
  • Sequence Analysis, DNA / methods*
  • Validation Studies as Topic