Modern computational models of infectious diseases greatly enhance our ability to understand new infectious threats and assess the effects of different interventions. The recently-released CDC Framework for Preventing Infectious Diseases calls for increased use of predictive modelling of epidemic emergence for public health preparedness. Currently, the utility of these technologies in preparedness and response to outbreaks is limited by gaps between modelling output and information requirements for incident management. The authors propose an operational structure that will facilitate integration of modelling capabilities into action planning for outbreak management, using the Incident Command System (ICS) and Synchronization Matrix framework. It is designed to be adaptable and scalable for use by state and local planners under the National Response Framework (NRF) and Emergency Support Function #8 (ESF-8). Specific epidemiological modelling requirements are described, and integrated with the core processes for public health emergency decision support. These methods can be used in checklist format to align prospective or real-time modelling output with anticipated decision points, and guide strategic situational assessments at the community level. It is anticipated that formalising these processes will facilitate translation of the CDC's policy guidance from theory to practice during public health emergencies involving infectious outbreaks.