Thiocyanate (SCN) functions in host defense as part of the secreted lactoperoxidase (LPO) microbicidal pathway. SCN is the preferred substrate for LPO-driven catalytic reduction of hydrogen peroxide (H(2)O(2)) forming hypothiocyanous acid (HOSCN). HOSCN is selectively generated by many peroxidase enzymes that can utilize SCN including: eosinophil peroxidase (EPO), gastric peroxidase (GPO), myeloperoxidase (MPO), salivary peroxidase (SPO), and thyroid peroxidase (TPO). These enzymes generate HOSCN through a two-electron halogenation reaction. HOSCN is a potent microbicidal agent that kills or nullifies invading pathogens but is better tolerated by host tissue. Some controversy exists as to whether physiologic levels of HOSCN are non-toxic to host tissue, but the disagreement appears to be based on results of enzymatic generation (yielding moderate steady-state exposure) versus direct high level acute exposure in mammalian cell lines. This apparent duality is also true of other endogenous oxidants such as hydrogen peroxide and relates to the difference between physiologically relevant oxidant production versus supra-physiologic bolus dosing approaches. SCN has antioxidant properties that include the ability to protect cells against oxidizing agents such as hypochlorous acid (HOCl) and repair protein chloramines. SCN is an important endogenous molecule that has the potential to interact in complex and elegant ways with its host environment and foreign organisms. SCN's diverse properties as both host defense and antioxidant agent make it a potentially useful therapeutic.
Copyright © 2012 Elsevier Inc. All rights reserved.