Dynamic stabilization of the optical resonances of single nitrogen-vacancy centers in diamond

Phys Rev Lett. 2012 May 18;108(20):206401. doi: 10.1103/PhysRevLett.108.206401. Epub 2012 May 14.

Abstract

We report electrical tuning by the Stark effect of the excited-state structure of single nitrogen-vacancy (NV) centers located ≲100 nm from the diamond surface. The zero-phonon line (ZPL) emission frequency is controllably varied over a range of 300 GHz. Using high-resolution emission spectroscopy, we observe electrical tuning of the strengths of both cycling and spin-altering transitions. Under resonant excitation, we apply dynamic feedback to stabilize the ZPL frequency. The transition is locked over several minutes and drifts of the peak position on timescales ≳100 ms are reduced to a fraction of the single-scan linewidth, with standard deviation as low as 16 MHz (obtained for an NV in bulk, ultrapure diamond). These techniques should improve the entanglement success probability in quantum communications protocols.