Lipids production of the marine microalga species Nannochloropsis oculata was deeply investigated by studying under continuous light the effects of different nitrogen starvation strategies in photobioreactors of various thicknesses. Operating parameters like incident photons flux density (PFD), initial nitrogen (progressive starvation strategy) or biomass concentrations (sudden starvation strategy) were examined, with a detailed analysis of their effects on the quality and production kinetics of total (TL) and triglycerides (TG). In addition to the already known effect of nitrogen starvation to trigger reserve lipids accumulation (mainly TG), it was demonstrated the relevance of the light received per cell affecting TG content and productivities, as well as fatty acids (FA) profiles. With appropriate optimization, N. oculata was confirmed as an interesting candidate for biodiesel application, with high FA accumulation (up to around 50%DW with 43%DW in TG-FA), high productivity (maximum 3.6×10(-3)kg(TG-FA)m(-2)d(-1)) and a TG-FA profile close to palm oil.
Copyright © 2012 Elsevier Ltd. All rights reserved.