Solar UV radiation reduces the barrier function of human skin

Proc Natl Acad Sci U S A. 2012 Oct 16;109(42):17111-6. doi: 10.1073/pnas.1206851109. Epub 2012 Oct 1.

Abstract

The ubiquitous presence of solar UV radiation in human life is essential for vitamin D production but also leads to skin photoaging, damage, and malignancies. Photoaging and skin cancer have been extensively studied, but the effects of UV on the critical mechanical barrier function of the outermost layer of the epidermis, the stratum corneum (SC), are not understood. The SC is the first line of defense against environmental exposures like solar UV radiation, and its effects on UV targets within the SC and subsequent alterations in the mechanical properties and related barrier function are unclear. Alteration of the SC's mechanical properties can lead to severe macroscopic skin damage such as chapping and cracking and associated inflammation, infection, scarring, and abnormal desquamation. Here, we show that UV exposure has dramatic effects on cell cohesion and mechanical integrity that are related to its effects on the SC's intercellular components, including intercellular lipids and corneodesmosomes. We found that, although the keratin-controlled stiffness remained surprisingly constant with UV exposure, the intercellular strength, strain, and cohesion decreased markedly. We further show that solar UV radiation poses a double threat to skin by both increasing the biomechanical driving force for damage while simultaneously decreasing the skin's natural ability to resist, compromising the critical barrier function of the skin.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adult
  • Aged
  • Biomechanical Phenomena
  • Cell Adhesion / radiation effects
  • Epidermis / pathology*
  • Epidermis / physiology
  • Epidermis / radiation effects*
  • Female
  • Humans
  • Middle Aged
  • Spectroscopy, Fourier Transform Infrared
  • Sunlight / adverse effects*
  • Ultraviolet Rays / adverse effects*