Rationale: Asthma has substantial morbidity and mortality and a strong genetic component, but identification of genetic risk factors is limited by availability of suitable studies.
Objectives: To test if population-based cohorts with self-reported physician-diagnosed asthma and genome-wide association (GWA) data could be used to validate known associations with asthma and identify novel associations.
Methods: The APCAT (Analysis in Population-based Cohorts of Asthma Traits) consortium consists of 1,716 individuals with asthma and 16,888 healthy controls from six European-descent population-based cohorts. We examined associations in APCAT of thirteen variants previously reported as genome-wide significant (P<5 x 10(-8)) and three variants reported as suggestive (P<5× 10(-7)). We also searched for novel associations in APCAT (Stage 1) and followed-up the most promising variants in 4,035 asthmatics and 11,251 healthy controls (Stage 2). Finally, we conducted the first genome-wide screen for interactions with smoking or hay fever.
Main results: We observed association in the same direction for all thirteen previously reported variants and nominally replicated ten of them. One variant that was previously suggestive, rs11071559 in RORA, now reaches genome-wide significance when combined with our data (P = 2.4 × 10(-9)). We also identified two genome-wide significant associations: rs13408661 near IL1RL1/IL18R1 (P(Stage1+Stage2) = 1.1x10(-9)), which is correlated with a variant recently shown to be associated with asthma (rs3771180), and rs9268516 in the HLA region (P(Stage1+Stage2) = 1.1x10(-8)), which appears to be independent of previously reported associations in this locus. Finally, we found no strong evidence for gene-environment interactions with smoking or hay fever status.
Conclusions: Population-based cohorts with simple asthma phenotypes represent a valuable and largely untapped resource for genetic studies of asthma.