Neuroglobin is a member of the globin superfamily expressed in vertebrate brain and retina. The protein is thought to be involved in neuronal protection from hypoxia or oxidative stress and could represent a key element of Alzheimer disease pathogenesis. Our aim was to determine whether neuroglobin could be directly associated with mitochondrial metabolism and integrity. We identified three different forms of neuroglobin in the retina, varying in their apparent molecular masses; all forms are abundant in mitochondrial fractions. This indicates that a significant fraction of the protein localizes within the organelle either in the matrix or in the matrix side of the inner membrane. Since neuroglobin was especially abundant in the ganglion cell layer, we transduced retinal ganglion cells with an anti-neuroglobin short hairpin RNA using in vivo electroporation. Neuroglobin knockdown leads to reduced activities of respiratory chain complexes I and III, degeneration of retinal ganglion cells, and impairment of visual function. The deleterious effect on cell survival was confirmed in primary retinal ganglion cells subjected to inhibition of neuroglobin expression. Hence, neuroglobin should be considered as a novel mitochondrial protein involved in respiratory chain function which is essential for retinal ganglion cell integrity.
Copyright © 2012 Elsevier B.V. All rights reserved.