Induced self expression of the NKp30 ligand B7-H6 facilitates NK cell-mediated elimination of stressed cells. A fusion protein consisting of the ectodomain of B7-H6 and the CD20 single-chain fragment variable 7D8 was generated to mimic an induced self phenotype required for NK cell-mediated target cell elimination. B7-H6:7D8 had bifunctional properties as reflected by its ability to simultaneously bind to the CD20 Ag and to the NKp30 receptor. B7-H6:7D8 bound by CD20(+) lymphoma cells activated human NK cells and triggered degranulation. Consequently, the immunoligand B7-H6:7D8 induced killing of lymphoma-derived cell lines as well as fresh tumor cells from chronic lymphocytic leukemia or lymphoma patients. B7-H6:7D8 was active at nanomolar concentrations in a strictly Ag-specific manner and required interaction with both CD20 and NKp30. Remarkably, NK cell cytotoxicity was further augmented by concomitant activation of Fcγ receptor IIIa or NK group 2 member D. Thus, B7-H6:7D8 acted synergistically with the CD20 Ab rituximab and the immunoligand ULBP2:7D8, which was similarly designed as B7-H6:7D8 but engaging the NK group 2 member D receptor. In conclusion, to our knowledge, B7-H6:7D8 represents the first Ab-based molecule stimulating NKp30-mediated NK cell cytotoxicity for therapeutic purposes and provides proof of concept that Ag-specific NKp30 engagement may represent an innovative strategy to enhance antitumoral NK cell cytotoxicity.