As an astrocytic protein specific to the central nervous system, S100b is a potentially useful marker in outcome prediction after traumatic brain injury (TBI). Some studies have questioned the validity of S100b, citing the extracerebral origins of the protein as reducing the specificity of the marker. This study evaluated S100b as a prognostic biomarker in adult subjects with severe TBI (sTBI) by comparing outcomes with S100b temporal profiles generated from both cerebrospinal fluid (CSF) (n = 138 subjects) and serum (n = 80 subjects) samples across a 6-day time course. Long-bone fracture, Injury Severity Score (ISS), and isolated head injury status were variables used to assess extracerebral sources of S100b in serum. After TBI, CSF and serum S100b levels were increased over healthy controls across the first 6 days post-TBI (p ≤ 0.005 and p ≤ 0.031). Though CSF and serum levels were highly correlated during early time points post-TBI, this association diminished over time. Bivariate analysis showed that subjects who had temporal CSF profiles with higher S100b concentrations had higher acute mortality (p < 0.001) and worse Glasgow Outcome Scale (GOS; p = 0.002) and Disability Rating Scale (DRS) scores (p = 0.039) 6 months post-injury. Possibly as a result of extracerebral sources of S100b in serum, as represented by high ISS scores (p = 0.032), temporal serum profiles were associated with acute mortality (p = 0.015). High CSF S100b levels were observed in women (p = 0.022) and older subjects (p = 0.004). Multivariate logistic regression confirmed CSF S100b profiles in predicting GOS and DRS and showed mean and peak serum S100b as acute mortality predictors after sTBI.