Injury to the spinal cord results in direct damage to axons, neuronal cell bodies, and glia that cause functional loss below the site of injury. In addition, the injury also triggers an inflammatory response that contributes to secondary tissue damage that leads to further functional loss. Reducing inflammation after spinal cord injury (SCI) is therefore a worthy therapeutic goal. Inflammation in the injured spinal cord is a complex response that involves resident cells of the central nervous system as well as infiltrating immune cells, and is mediated by a variety of molecular pathways and signaling molecules. Here, we discuss approaches we have used to identify novel therapeutic targets to modulate the inflammatory response after SCI to reduce tissue damage and promote recovery. Effective treatments for SCI will likely require a combination of approaches to reduce inflammation and secondary damage with those that promote axon regeneration.
Copyright © 2012 Elsevier Inc. All rights reserved.