Following sequencing and assembly of the human genome, the preferred methods for identification of new drug targets have changed dramatically. Modern tactics such as genome-wide association studies (GWAS) and deep sequencing are fundamentally different from the pharmacology-guided approaches used previously, in which knowledge of small molecule ligands acting at their cellular targets was the primary discovery engine. A consequence of the 'target-first, pharmacology-second' strategy is that many predicted drug targets are non-enzymes, such as scaffolding, regulatory or structural proteins, and their activities are often dependent on protein-protein interactions (PPIs). These types of targets create unique challenges to drug discovery efforts because enzymatic turnover cannot be used as a convenient surrogate for compound potency. Moreover, it is often challenging to predict how ligand binding to non-enzymes might affect changes in protein function and/or pathobiology. Thus, in the postgenomic era, targets might be strongly implicated by molecular biology-based methods, yet they often later earn the designation of 'undruggable'. Can the scope of available targets be widened to include these promising, but challenging, non-enzymes? In this review, we discuss advances in high-throughput screening (HTS) technology and chemical library design that are emerging to deal with these challenges.
© 2012 John Wiley & Sons A/S.