Functionalized magnetite silica thin films fabricated by MAPLE with antibiofilm properties

Biofabrication. 2013 Mar;5(1):015007. doi: 10.1088/1758-5082/5/1/015007. Epub 2012 Dec 20.

Abstract

We report on the fabrication of magnetite/salicylic acid/silica shell/antibiotics (Fe(3)O(4)/SA/SiO(2)/ATB) thin films by matrix-assisted pulsed laser evaporation (MAPLE) to inert substrates. Fe(3)O(4)-based powder have been synthesized and investigated by XRD and TEM. All thin films were studied by FTIR, SEM and in vitro biological assays using Staphylococcus aureus and Pseudomonas aeruginosa reference strains, as well as eukaryotic HEp-2 cells. The influence of the obtained nanosystems on the microbial biofilm development as well as their biocompatibility has been assessed. For optimum deposition conditions, we obtained uniform adherent films with the composition identical with the raw materials. Fe(3)O(4)/SA/SiO(2)/ATB thin films had an inhibitory activity on the ability of microbial strains to initiate and develop mature biofilms, in a strain- and antibiotic-dependent manner. These magnetite silica thin films are promising candidates for the development of novel materials designed for the inhibition of medical biofilms formed by different pathogenic agents on common substrates, frequently implicated in the etiology of chronic and hard to treat infections.

MeSH terms

  • Anti-Bacterial Agents / chemistry*
  • Anti-Bacterial Agents / pharmacology
  • Biofilms / drug effects*
  • Drug Carriers / chemical synthesis
  • Drug Carriers / chemistry*
  • Drug Delivery Systems / instrumentation*
  • Drug Delivery Systems / methods
  • Lasers
  • Magnetite Nanoparticles / chemistry*
  • Pseudomonas aeruginosa / drug effects
  • Pseudomonas aeruginosa / physiology*
  • Silicon Dioxide / chemistry
  • Staphylococcus aureus / drug effects
  • Staphylococcus aureus / physiology*

Substances

  • Anti-Bacterial Agents
  • Drug Carriers
  • Magnetite Nanoparticles
  • Silicon Dioxide