Background and purpose: Bone marrow-derived cells (BMDCs) home to vascular endothelial growth factor (VEGF)-induced brain angiogenic foci, and VEGF induces cerebrovascular dysplasia in adult endoglin heterozygous (Eng(+/-)) mice. We hypothesized that Eng(+/-) BMDCs cause cerebrovascular dysplasia in the adult mouse after VEGF stimulation.
Methods: BM transplantation was performed using adult wild-type (WT) and Eng(+/-) mice as donors/recipients. An adeno-associated viral vector expressing VEGF was injected into the basal ganglia 4 weeks after transplantation. Vascular density, dysplasia index (vessels >15 µm/100 vessels), and BMDCs in the angiogenic foci were analyzed.
Results: The dysplasia index of WT/Eng(+/-) BM mice was higher than WT/WT BM mice (P<0.001) and was similar to Eng(+/-)/Eng(+/-) BM mice (P=0.2). Dysplasia in Eng(+/-) mice was partially rescued by WT BM (P<0.001). WT/WT BM and WT/Eng(+/-) BM mice had similar numbers of BMDCs in the angiogenic foci (P=0.4), most of which were CD68(+). Eng(+/-) monocytes/macrophages expressed less matrix metalloproteinase-9 and Notch1.
Conclusions: Endoglin-deficient BMDCs are sufficient for VEGF to induce vascular dysplasia in the adult mouse brain. Our data support a previously unrecognized role of BM in the development of cerebrovascular malformations.