As a kind of novel and efficient material, ionic liquids (ILs) are used for capture of acidic gases including SO2 and CO2 from flue gas. Due to very low content of acidic gases in flue gas, it is important to find functional ILs to absorb the acidic gases. However, up to now, there is no criterion to distinguish if the ILs are functional or not before use, which greatly influences the design of functional ILs. In this work, a series of ILs were synthesized and used to determine functional or normal ILs for the capture of acidic gases. It has been found that the pKa of organic acids forming the anion of ILs can be used to differentiate functional ILs from normal ILs for the capture of acidic gases from flue gas. If the pKa of an organic acid is larger than that of sulfurous acid (or carbonic acid), the ILs formed by the organic acid can be called functional ILs for SO2 (or CO2) capture, and it can have a high absorption capacity of SO2 (or CO2) with low SO2 (or CO2) concentrations. If not, the IL is just a normal IL. The pKa of organic acids can also be used to explain the absorption mechanism and guide the synthesis of functional ILs.