PTH prevents the adverse effects of focal radiation on bone architecture in young rats

Bone. 2013 Aug;55(2):449-57. doi: 10.1016/j.bone.2013.02.023. Epub 2013 Mar 5.

Abstract

Radiation therapy is a common treatment regimen for cancer patients. However, its adverse effects on the neighboring bone could lead to fractures with a great impact on quality of life. The underlying mechanism is still elusive and there is no preventive or curative solution for this bone loss. Parathyroid hormone (PTH) is a current therapy for osteoporosis that has potent anabolic effects on bone. In this study, we found that focal radiation from frequent scans of the right tibiae in 1-month-old rats by micro-computed tomography severely decreased trabecular bone mass and deteriorated bone structure. Interestingly, PTH daily injections remarkably improved trabecular bone in the radiated tibiae with increases in trabecular number, thickness, connectivity, structure model index and stiffness, and a decrease in trabecular separation. Histomorphometric analysis revealed that radiation mainly decreased the number of osteoblasts and impaired their mineralization activity but had little effects on osteoclasts. PTH reversed these adverse effects and greatly increased bone formation to a similar level in both radiated and non-radiated bones. Furthermore, PTH protects bone marrow mesenchymal stem cells from radiation-induced damage, including a decrease in number and an increase in adipogenic differentiation. While radiation generated the same amount of free radicals in the bone marrow of vehicle-treated and PTH-treated animals, the percentage of apoptotic bone marrow cells was significantly attenuated in the PTH group. Taken together, our data demonstrate a radioprotective effect of PTH on bone structure and bone marrow and shed new light on a possible clinical application of anabolic treatment in radiotherapy.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Aging
  • Animals
  • Male
  • Mesenchymal Stem Cells / drug effects
  • Parathyroid Hormone / pharmacology*
  • Radiation-Protective Agents / pharmacology*
  • Radiotherapy / adverse effects*
  • Rats
  • Rats, Sprague-Dawley
  • Tibia / drug effects*
  • Tibia / radiation effects*
  • X-Ray Microtomography / adverse effects

Substances

  • Parathyroid Hormone
  • Radiation-Protective Agents