Adult functional magnetic resonance imaging (fMRI) literature suggests that a left-right hemispheric dissociation may exist between verbal and spatial working memory (WM), respectively. However, investigation of this type has been obscured by incomparable verbal and spatial WM tasks and/or visual inspection at arbitrary thresholds as means to assess lateralization. Furthermore, it is unclear whether this hemispheric lateralization is present during adolescence, a time in which WM skills are improving, and whether there is a developmental association with laterality of brain functioning. This study used comparable verbal and spatial WM n-back tasks during fMRI and a bootstrap analysis approach to calculate lateralization indices (LIs) across several thresholds to examine the potential of a left-right WM hemispheric dissociation in healthy adolescents. We found significant left hemispheric lateralization for verbal WM, most notably in the frontal and parietal lobes, as well as right hemisphere lateralization for spatial WM, seen in frontal and temporal cortices. Although no significant relationships were observed between LI and age or LI and performance, significant age-related patterns of brain activity were demonstrated during both verbal and spatial WM. Specifically, increased adolescent age was associated with less activity in the default mode brain network during verbal WM. In contrast, increased adolescent age was associated with greater activity in task-positive posterior parietal cortex during spatial working memory. Our findings highlight the importance of utilizing non-biased statistical methods and comparable tasks for determining patterns of functional lateralization. Our findings also suggest that, while a left-right hemispheric dissociation of verbal and spatial WM is apparent by early adolescence, age-related changes in functional activation during WM are also present.
Copyright © 2013 Elsevier Inc. All rights reserved.