A calsequentrin (CS)-like glycoprotein is present in the sarcoplasmic reticulum (SR) of chicken pectoralis muscle, which displays unusual properties: it binds relatively low amounts of Ca2+, compared to CS in mammalian skeletal muscle (Yap & MacLennan, 1976), it does not exhibit a marked pH-dependent shift in mobility in sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), and its metachromatic staining properties with Stains All are likewise peculiar (Damiani et al., 1986). We have now definitively localized the same protein to the junctional terminal cisternae (TC) fraction of the SR of chicken pectoralis muscle and have further characterized it, following purification by crystallization with Ca2+ and by Ca2(+)-dependent elution from phenyl-Sepharose columns. The purified protein (apparent Mr: 51 kDa), isoelectrofocuses at pH 4.5, and is readily identified on blots by a 45Ca overlay technique, similar to CS of rabbit skeletal muscle, but it binds half as much Ca2+ (about 20 moles of Ca2+ per mole of protein), as estimated by equilibrium dialysis. However, the chicken protein shares extensive similarities with mammalian CSs, concerning Ca2(+)-induced changes in maximum intrinsic fluorescence and the Ca2(+)-modulated interaction with phenyl-Sepharose, as well as in being protected by Ca2+ from proteolysis by either trypsin or chymotrypsin. We discuss how the presence of a Ca2(+)-regulated hydrophobic site in the CS molecule appears to be the most invariant property of the CS-family of Ca2(+)-binding proteins.