Background: For reasons that remain unclear, whether type 5 adenylyl cyclase (AC5), 1 of 2 major AC isoforms in heart, is protective or deleterious in response to cardiac stress is controversial. To reconcile this controversy we examined the cardiomyopathy induced by chronic isoproterenol in AC5 transgenic (Tg) mice and the signaling mechanisms involved.
Methods and results: Chronic isoproterenol increased oxidative stress and induced more severe cardiomyopathy in AC5 Tg, as left ventricular ejection fraction fell 1.9-fold more than wild type, along with greater left ventricular dilation and increased fibrosis, apoptosis, and hypertrophy. Oxidative stress induced by chronic isoproterenol, detected by 8-OhDG was 15% greater, P=0.007, in AC5 Tg hearts, whereas protein expression of manganese superoxide dismutase (MnSOD) was reduced by 38%, indicating that the susceptibility of AC5 Tg to cardiomyopathy may be attributable to decreased MnSOD expression. Consistent with this, susceptibility of the AC5 Tg to cardiomyopathy was suppressed by overexpression of MnSOD, whereas protection afforded by the AC5 knockout (KO) was lost in AC5 KO×MnSOD heterozyous KO mice. Elevation of MnSOD was eliminated by both sirtuin and MEK inhibitors, suggesting both the SIRT1/FoxO3a and MEK/ERK pathway are involved in MnSOD regulation by AC5.
Conclusions: Overexpression of AC5 exacerbates the cardiomyopathy induced by chronic catecholamine stress by altering regulation of SIRT1/FoxO3a, MEK/ERK, and MnSOD, resulting in oxidative stress intolerance, thereby shedding light on new approaches for treatment of heart failure.