Background: The mechanism of primary resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in EGFR-mutant non-small-cell lung cancer (NSCLC) has not been clearly understood.
Patients and methods: Eleven patients exhibiting primary resistance (disease progression <3 months) were identified among 197 consecutive NSCLC patients with TKI-sensitive EGFR mutations who received EGFR TKIs at Seoul National University Hospital. Treatment-naïve tumors were examined for concurrent genetic alterations using fluorescence in situ hybridization and targeted deep sequencing of cancer-related genes. Deletion polymorphism of Bcl-2-interacting mediator of cell death (BIM) gene was examined to validate its predictive role for TKI outcome.
Results: The median progression-free survival (PFS) for patients receiving EGFR TKIs was 11.9 months, and the response rate 78.8%. Among the 11 patients exhibiting primary resistance, a de novo T790M mutation was identified in one patient, and two exhibited mesenchymal-epithelial transition amplification and anaplastic lymphoma kinase fusion. Targeted deep sequencing identified no recurrent, coexistent drivers of NSCLC. Survival analysis revealed that patients with recurrent disease after surgery had a longer PFS than those with initial stage IV disease. However, BIM deletion polymorphism, line of treatment, EGFR genotype, and smoking were not predictive of PFS for EGFR TKIs.
Conclusions: We identified coexistent genetic alterations of cancer-related genes that could explain primary resistance in a small proportion of patients. Our result suggests that the mechanism of primary resistance might be heterogeneous.
Keywords: epidermal growth factor receptor mutation; erlotinib; gefitinib; primary resistance.