Adhesion strength-based, label-free isolation of human pluripotent stem cells

Nat Methods. 2013 May;10(5):438-44. doi: 10.1038/nmeth.2437. Epub 2013 Apr 7.

Abstract

We demonstrate substantial differences in 'adhesive signature' between human pluripotent stem cells (hPSCs), partially reprogrammed cells, somatic cells and hPSC-derived differentiated progeny. We exploited these differential adhesion strengths to rapidly (over ∼10 min) and efficiently isolate fully reprogrammed induced hPSCs (hiPSCs) as intact colonies from heterogeneous reprogramming cultures and from differentiated progeny using microfluidics. hiPSCs were isolated label free, enriched to 95%-99% purity with >80% survival, and had normal transcriptional profiles, differentiation potential and karyotypes. We also applied this strategy to isolate hPSCs (hiPSCs and human embryonic stem cells) during routine culture and show that it may be extended to isolate hPSC-derived lineage-specific stem cells or differentiated cells.

Publication types

  • Research Support, American Recovery and Reinvestment Act
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Cell Adhesion*
  • Cell Differentiation
  • Cell Separation
  • Humans
  • Karyotyping
  • Pluripotent Stem Cells / cytology*