Objective: To examine the effects of LSC101, a botanical compound, on adaptive and innate immunity.
Materials and methods: LCS101 preparations were tested for batch-to-batch consistency using high-performance liquid chromatography. T-cell activation was quantified in murine spleen cells using 3H-thymidine incorporation, and cytokine production analyzed with enzyme-linked immunosorbent assay. Natural killer cell activity was tested on human blood cells using flow cytometry, and cytotoxicity measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and apoptosis using a FACSCalibur. Effects on interferon-γ production in fluorouracil/doxorubicin-treated mice were tested with enzyme-linked immunosorbent assay.
Results: High-performance liquid chromatography analysis demonstrated batch-to-batch consistency. T-cell proliferation was increased, and a dose-dependent activation of natural killer cells and macrophage tumor necrosis factor-α secretion were observed with LCS101 treatment. Interferon-γ levels, reduced following fluorouracil treatment, were corrected in treated animals. No toxicity or compromised treatment outcomes were associated with LCS101 exposure.
Conclusions: LCS101 demonstrated significant effects on a number of immune processes. Further research is needed in order to understand the molecular immunomodulatory pathways affected by this compound, as well as clinical implications for treatment.
Keywords: NK cells; T-cell immunity; TNF-alpha; botanical compound; immunomodulation; interferon-gamma.