Combined targeting of mTOR and AKT is an effective strategy for basal-like breast cancer in patient-derived xenograft models

Mol Cancer Ther. 2013 Aug;12(8):1665-75. doi: 10.1158/1535-7163.MCT-13-0159. Epub 2013 May 20.

Abstract

Basal-like breast cancer is an aggressive disease for which targeted therapies are lacking. Recent studies showed that basal-like breast cancer is frequently associated with an increased activity of the phosphatidylinositol 3-kinase (PI3K) pathway, which is critical for cell growth, survival, and angiogenesis. To investigate the therapeutic potential of PI3K pathway inhibition in the treatment of basal-like breast cancer, we evaluated the antitumor effect of the mTOR inhibitor MK-8669 and AKT inhibitor MK-2206 in WU-BC4 and WU-BC5, two patient-derived xenograft models of basal-like breast cancer. Both models showed high levels of AKT phosphorylation and loss of PTEN expression. We observed a synergistic effect of MK-8669 and MK-2206 on tumor growth and cell proliferation in vivo. In addition, MK-8669 and MK-2206 inhibited angiogenesis as determined by CD31 immunohistochemistry. Biomarker studies indicated that treatment with MK-2206 inhibited AKT activation induced by MK-8669. To evaluate the effect of loss of PTEN on tumor cell sensitivity to PI3K pathway inhibition, we knocked down PTEN in WU-BC3, a basal-like breast cancer cell line with intact PTEN. Compared with control (GFP) knockdown, PTEN knockdown led to a more dramatic reduction in cell proliferation and tumor growth inhibition in response to MK-8669 and MK-2206 both in vitro and in vivo. Furthermore, a synergistic effect of these two agents on tumor volume was observed in WU-BC3 with PTEN knockdown. Our results provide a preclinical rationale for future clinical investigation of this combination in basal-like breast cancer with loss of PTEN.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antineoplastic Agents / pharmacology*
  • Breast Neoplasms / drug therapy
  • Breast Neoplasms / genetics
  • Breast Neoplasms / metabolism*
  • Breast Neoplasms / pathology
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Disease Models, Animal
  • Drug Resistance, Neoplasm / genetics
  • Drug Synergism
  • Enzyme Activation / drug effects
  • Female
  • Gene Knockdown Techniques
  • Heterocyclic Compounds, 3-Ring / pharmacology
  • Humans
  • Inhibitory Concentration 50
  • Neoplasms, Basal Cell / drug therapy
  • Neoplasms, Basal Cell / genetics
  • Neoplasms, Basal Cell / metabolism*
  • Neoplasms, Basal Cell / pathology
  • Neovascularization, Pathologic / drug therapy
  • PTEN Phosphohydrolase / genetics
  • Protein Kinase Inhibitors / pharmacology*
  • Proto-Oncogene Proteins c-akt / antagonists & inhibitors*
  • Proto-Oncogene Proteins c-akt / metabolism
  • Signal Transduction / drug effects
  • Sirolimus / analogs & derivatives
  • Sirolimus / pharmacology
  • TOR Serine-Threonine Kinases / antagonists & inhibitors*
  • TOR Serine-Threonine Kinases / metabolism
  • Tumor Burden / drug effects
  • Xenograft Model Antitumor Assays

Substances

  • Antineoplastic Agents
  • Heterocyclic Compounds, 3-Ring
  • MK 2206
  • Protein Kinase Inhibitors
  • ridaforolimus
  • Proto-Oncogene Proteins c-akt
  • TOR Serine-Threonine Kinases
  • PTEN Phosphohydrolase
  • Sirolimus