Multiple myeloma remains an incurable disease despite the introduction of the immunomodulatory drugs (IMiDs) thalidomide and lenalidomide and the proteasome inhibitor bortezomib that have improved the outcome of patients with both newly diagnosed and relapsed/refractory disease. However, patients who relapse after treatment with these agents or are refractory to them represent an unmet need and highlight the necessity for the development of novel anti-myeloma agents. Pomalidomide is an IMiD, structurally related to thalidomide, with enhanced antiangiogenic, antineoplastic, and anti-inflammatory properties and exhibiting potent anti-myeloma activity in vitro and in vivo. Pomalidomide has shown remarkable activity in patients who were refractory to both bortezomib and lenalidomide in Phase II and III studies. This paper reviews the chemistry and mechanisms of action of pomalidomide as well as all the available data from clinical trials on pomalidomide use in patients with refractory/relapsed multiple myeloma.
Keywords: angiogenesis; cereblon; immunomodulatory drugs; lenalidomide; refractory.