Focal adhesion kinase (FAK) is an attachment complex protein associated with the regulation of muscle mass through as-of-yet unclear mechanisms. We tested whether FAK is functionally important for muscle hypertrophy, with the hypothesis that FAK knockdown (FAK-KD) would impede cell growth associated with a trophic stimulus. C₂C₁₂ skeletal muscle cells harboring FAK-targeted (FAK-KD) or scrambled (SCR) shRNA were created using lentiviral transfection techniques. Both FAK-KD and SCR myotubes were incubated for 24 h with IGF-I (10 ng/ml), and additional SCR cells (±IGF-1) were incubated with a FAK kinase inhibitor before assay of cell growth. Muscle protein synthesis (MPS) and putative FAK signaling mechanisms (immunoblotting and coimmunoprecipitation) were assessed. IGF-I-induced increases in myotube width (+41 ± 7% vs. non-IGF-I-treated) and total protein (+44 ± 6%) were, after 24 h, attenuated in FAK-KD cells, whereas MPS was suppressed in FAK-KD vs. SCR after 4 h. These blunted responses were associated with attenuated IGF-I-induced FAK Tyr³⁹⁷ phosphorylation and markedly suppressed phosphorylation of tuberous sclerosis complex 2 (TSC2) and critical downstream mTOR signaling (ribosomal S6 kinase, eIF4F assembly) in FAK shRNA cells (all P < 0.05 vs. IGF-I-treated SCR cells). However, binding of FAK to TSC2 or its phosphatase Shp-2 was not affected by IGF-I or cell phenotype. Finally, FAK-KD-mediated suppression of cell growth was recapitulated by direct inhibition of FAK kinase activity in SCR cells. We conclude that FAK is required for IGF-I-induced muscle hypertrophy, signaling through a TSC2/mTOR/S6K1-dependent pathway via means requiring the kinase activity of FAK but not altered FAK-TSC2 or FAK-Shp-2 binding.
Keywords: S6 kinase 1; focal adhesion kinase; hypertrophy; insulin-like growth factor-I; mammalian target of rapamycin; skeletal muscle; tuberous sclerosis complex 2.