Deep learning with hierarchical convolutional factor analysis

IEEE Trans Pattern Anal Mach Intell. 2013 Aug;35(8):1887-901. doi: 10.1109/TPAMI.2013.19.

Abstract

Unsupervised multilayered (“deep”) models are considered for imagery. The model is represented using a hierarchical convolutional factor-analysis construction, with sparse factor loadings and scores. The computation of layer-dependent model parameters is implemented within a Bayesian setting, employing a Gibbs sampler and variational Bayesian (VB) analysis that explicitly exploit the convolutional nature of the expansion. To address large-scale and streaming data, an online version of VB is also developed. The number of dictionary elements at each layer is inferred from the data, based on a beta-Bernoulli implementation of the Indian buffet process. Example results are presented for several image-processing applications, with comparisons to related models in the literature.