Aims: The acute (type 1) cardio-renal syndrome (CRS) refers to an acute worsening of heart function leading to worsening renal function (WRF), and frequently complicates acute decompensated heart failure (ADHF) and acute myocardial infarction (AMI). The aim of this study was to investigate whether hyponatraemia, a surrogate marker of congestion and haemodilution and of neurohormonal activation, could identify patients at risk for WRF.
Methods and results: We studied the association between hyponatraemia (sodium <136 mmol/L) and WRF (defined as an increase of >0.3 mg/dL in creatinine above baseline) in two separate cohorts: patients with ADHF (n = 525) and patients with AMI (n = 2576). Hyponatraemia on admission was present in 156 patients (19.7%) with ADHF and 461 patients (17.7%) with AMI. Hyponatraemia was more frequent in patients who subsequently developed WRF as compared with patients who did not, in both the ADHF (34.6% vs. 22.2%, P = 0.0003) and AMI (29.7% vs. 21.8%, P<0.01) cohorts. In a multivariable logistic regression model, the multivariable adjusted odds ratio for WRF was 1.90 [95% confidence interval (CI) 1.25-2.88; P = 0.003] and 1.56 (95% CI 1.13-2.16; P = 0.002) in the ADHF and AMI cohorts, respectively. The mortality risk associated with hyponatraemia was attenuated in the absence of WRF.
Conclusion: Hyponatraemia predicts the development of WRF in two clinical scenarios that frequently lead to the type I CRS. These data are consistent with the concept that congestion and neurohormonal activation play a pivotal role in the pathophysiology of acute cardio-renal failure.
Keywords: Acute heart failure; Acute myocardial infarction; Cardio-renal syndromes; Worsening renal function.
First published online by Oxford University Press on behalf of the European Society of Cardiology. All rights reserved. © The Author 2013.