In this study, we describe the synthesis of new nortopsentin analogues, 1H-pyrrolo[2,3-b]pyridine derivatives and their biological effects in experimental models of diffuse malignant peritoneal mesothelioma (DMPM), a rare and rapidly fatal disease, poorly responsive to conventional therapies. The three most active compounds, 1f (3-[2-(5-fluoro-1-methyl-1H-indol-3-yl)-1,3-thiazol-4-yl]-1H-pyrrolo[2,3-b]pyridine), 3f (3-[2-(1H-indol-3-yl)-1,3-thiazol-4-yl]-1-methyl-1H-pyrrolo[2,3-b]pyridine), and 1l (3-[2-(5-fluoro-1-methyl-1H-indol-3-yl)-1,3-thiazol-4-yl]-1-methyl-1H-pyrrolo[2,3-b] pyridine), which were shown to act as cyclin-dependent kinase 1 inhibitors, consistently reduced DMPM cell proliferation and induced a caspase-dependent apoptotic response, with a concomitant reduction of the expression of the active Thr(34)-phosphorylated form of the antiapoptotic protein survivin. Moreover, the combined treatment of DMPM cells with 3f derivative and paclitaxel produced a synergistic cytotoxic effect, which was paralleled by an enhanced apoptotic response. In the mouse model, i.p. administration of 1f, 3f, and 1l derivatives was effective, resulting in a significant tumor volume inhibition of DMPM xenografts (range, 58-75%) at well-tolerated doses, and two complete responses were observed in each treatment group.