Objective: Although there is growing awareness of the long-term cognitive effects of repetitive mild traumatic brain injury (rmTBI; eg, sports concussions), whether repeated concussions cause long-term cognitive deficits remains controversial. Moreover, whether cognitive deficits depend on increased amyloid β deposition and tau phosphorylation or are worsened by the apolipoprotein E4 allele remains unknown. Here, we use an experimental model of rmTBI to address these clinical controversies.
Methods: A weight drop rmTBI model was used that results in cognitive deficits without loss of consciousness, seizures, or gross or microscopic evidence of brain damage. Cognitive function was assessed using a Morris water maze (MWM) paradigm. Immunostaining and enzyme-linked immunosorbent assay (ELISA) were used to assess amyloid β deposition and tau hyperphosphorylation. Brain volume and white matter integrity were assessed by magnetic resonance imaging (MRI).
Results: Mice subjected to rmTBI daily or weekly but not biweekly or monthly had persistent cognitive deficits as long as 1 year after injuries. Long-term cognitive deficits were associated with increased astrocytosis but not tau phosphorylation or amyloid β (by ELISA); plaques or tangles (by immunohistochemistry); or brain volume loss or changes in white matter integrity (by MRI). APOE4 was not associated with worse MWM performance after rmTBI.
Interpretation: Within the vulnerable time period between injuries, rmTBI produces long-term cognitive deficits independent of increased amyloid β or tau phosphorylation. In this model, cognitive outcome is not influenced by APOE4 status. The data have implications for the long-term mental health of athletes who suffer multiple concussions.
Copyright © 2013 American Neurological Association.