Exposure of clinical MRSA heterogeneous strains to β-lactams redirects metabolism to optimize energy production through the TCA cycle

PLoS One. 2013 Aug 5;8(8):e71025. doi: 10.1371/journal.pone.0071025. Print 2013.

Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) has emerged as one of the most important pathogens both in health care and community-onset infections. The prerequisite for methicillin resistance is mecA, which encodes a β-lactam-insensitive penicillin binding protein PBP2a. A characteristic of MRSA strains from hospital and community associated infections is their heterogeneous expression of resistance to β-lactam (HeR) in which only a small portion (≤ 0.1%) of the population expresses resistance to oxacillin (OXA) ≥ 10 µg/ml, while in other isolates, most of the population expresses resistance to a high level (homotypic resistance, HoR). The mechanism associated with heterogeneous expression requires both increase expression of mecA and a mutational event that involved the triggering of a β-lactam-mediated SOS response and related lexA and recA genes. In the present study we investigated the cellular physiology of HeR-MRSA strains during the process of β-lactam-mediated HeR/HoR selection at sub-inhibitory concentrations by using a combinatorial approach of microarray analyses and global biochemical profiling employing gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS) to investigate changes in metabolic pathways and the metabolome associated with β-lactam-mediated HeR/HoR selection in clinically relevant heterogeneous MRSA. We found unique features present in the oxacillin-selected SA13011-HoR derivative when compared to the corresponding SA13011-HeR parental strain that included significant increases in tricarboxyl citric acid (TCA) cycle intermediates and a concomitant decrease in fermentative pathways. Inactivation of the TCA cycle enzyme cis-aconitase gene in the SA13011-HeR strain abolished β-lactam-mediated HeR/HoR selection demonstrating the significance of altered TCA cycle activity during the HeR/HoR selection. These results provide evidence of both the metabolic cost and the adaptation that HeR-MRSA clinical strains undergo when exposed to β-lactam pressure, indicating that the energy production is redirected to supply the cell wall synthesis/metabolism, which in turn contributes to the survival response in the presence of β-lactam antibiotics.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Aconitate Hydratase / genetics
  • Amino Acids / metabolism
  • Anti-Bacterial Agents / pharmacology*
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism
  • Carbohydrate Metabolism
  • Cell Membrane / metabolism
  • Cell Wall / metabolism
  • Citric Acid Cycle*
  • DNA Damage
  • DNA, Bacterial / genetics
  • Energy Metabolism
  • Methicillin-Resistant Staphylococcus aureus / drug effects
  • Methicillin-Resistant Staphylococcus aureus / metabolism*
  • Microbial Sensitivity Tests
  • Oxacillin / pharmacology*
  • RNA, Bacterial / genetics
  • RNA, Bacterial / metabolism
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism
  • Transcriptome
  • beta-Lactam Resistance

Substances

  • Amino Acids
  • Anti-Bacterial Agents
  • Bacterial Proteins
  • DNA, Bacterial
  • RNA, Bacterial
  • RNA, Messenger
  • Aconitate Hydratase
  • Oxacillin