High angle annular dark field (HAADF)-scanning transmission electron microscope (STEM) data is increasingly being used in the physical sciences to research materials in 3D because it reduces the effects of Bragg diffraction seen in bright field TEM data. Typically, tomographic reconstructions are performed by directly applying either filtered back projection (FBP) or the simultaneous iterative reconstruction technique (SIRT) to the data. Since HAADF-STEM tomography is a limited angle tomography modality with low signal to noise ratio, these methods can result in significant artifacts in the reconstructed volume. In this paper, we develop a model based iterative reconstruction algorithm for HAADF-STEM tomography. We combine a model for image formation in HAADF-STEM tomography along with a prior model to formulate the tomographic reconstruction as a maximum a posteriori probability (MAP) estimation problem. Our formulation also accounts for certain missing measurements by treating them as nuisance parameters in the MAP estimation framework. We adapt the iterative coordinate descent algorithm to develop an efficient method to minimize the corresponding MAP cost function. Reconstructions of simulated as well as experimental data sets show results that are superior to FBP and SIRT reconstructions, significantly suppressing artifacts and enhancing contrast.