Late effects of local irradiation on the expression of inflammatory markers in the Arteria saphena of C57BL/6 wild-type and ApoE-knockout mice

Radiat Environ Biophys. 2014 Mar;53(1):117-24. doi: 10.1007/s00411-013-0492-7. Epub 2013 Sep 27.

Abstract

Combined action of irradiation (IR), shear stress, and high blood pressure is well recognized to induce damage to vasculature, while data on pathological effects of IR in large peripheral vessels with low blood pressure are scarce. The purpose of the present study was hence to investigate time- and dose-dependent effects of local IR on inflammatory and prothrombotic processes in the Arteria (A.) saphena of C57BL/6 wild-type and apolipoprotein E (ApoE)-knockout mice. Single doses of 2, 5, 8, 10, or 16 Gy were locally delivered to the A. saphena of the left leg of the animals. The expression of CD31, intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), E-selectin, monocyte chemoattractant protein-1 (MCP-1), and thrombomodulin (TM) was quantified by semiautomatic TissueFax fluorescence analysis in frozen arterial sections. Follow-up periods were 3, 6, 9, 12, or 18 months. Protein expression in the arterial wall displayed dose-dependent changes. Proinflammatory reactions were observed for CD31, E-selectin, ICAM, and VCAM already at doses of 2 Gy. Anti-inflammatory changes were detected for MCP-1 and TM. The effects were more pronounced in wild-type versus ApoE(-/-) mice. Changes remain mostly transient up to 16 Gy. Dose- and time-dependent changes in inflammatory and thrombotic mediators in the wall of the A. saphena were found after local IR but did not transform into histopathological consequences.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apolipoproteins E / deficiency*
  • Apolipoproteins E / genetics*
  • Arteries / metabolism*
  • Arteries / radiation effects*
  • Biomarkers / metabolism
  • Gene Expression Regulation / radiation effects*
  • Inflammation / metabolism
  • Mice
  • Mice, Knockout
  • Time Factors

Substances

  • Apolipoproteins E
  • Biomarkers