Two-sided ubiquitin binding of NF-κB essential modulator (NEMO) zinc finger unveiled by a mutation associated with anhidrotic ectodermal dysplasia with immunodeficiency syndrome

J Biol Chem. 2013 Nov 22;288(47):33722-33737. doi: 10.1074/jbc.M113.483305. Epub 2013 Oct 7.

Abstract

Hypomorphic mutations in the X-linked human NEMO gene result in various forms of anhidrotic ectodermal dysplasia with immunodeficiency. NEMO function is mediated by two distal ubiquitin binding domains located in the regulatory C-terminal domain of the protein: the coiled-coil 2-leucine zipper (CC2-LZ) domain and the zinc finger (ZF) domain. Here, we investigated the effect of the D406V mutation found in the NEMO ZF of an ectodermal dysplasia with immunodeficiency patients. This point mutation does not impair the folding of NEMO ZF or mono-ubiquitin binding but is sufficient to alter NEMO function, as NEMO-deficient fibroblasts and Jurkat T lymphocytes reconstituted with full-length D406V NEMO lead to partial and strong defects in NF-κB activation, respectively. To further characterize the ubiquitin binding properties of NEMO ZF, we employed di-ubiquitin (di-Ub) chains composed of several different linkages (Lys-48, Lys-63, and linear (Met-1-linked)). We showed that the pathogenic mutation preferentially impairs the interaction with Lys-63 and Met-1-linked di-Ub, which correlates with its ubiquitin binding defect in vivo. Furthermore, sedimentation velocity and gel filtration showed that NEMO ZF, like other NEMO related-ZFs, binds mono-Ub and di-Ub with distinct stoichiometries, indicating the presence of a new Ub site within the NEMO ZF. Extensive mutagenesis was then performed on NEMO ZF and characterization of mutants allowed the proposal of a structural model of NEMO ZF in interaction with a Lys-63 di-Ub chain.

Keywords: EDA-ID; Fluorescence; IKK Complex; Immunodeficiency; NEMO; NF-κB; Ubiquitin; Zinc Finger.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Substitution
  • Animals
  • Ectodermal Dysplasia / genetics
  • Ectodermal Dysplasia / metabolism*
  • Humans
  • I-kappa B Kinase / chemistry
  • I-kappa B Kinase / genetics
  • I-kappa B Kinase / metabolism*
  • Immunologic Deficiency Syndromes / genetics
  • Immunologic Deficiency Syndromes / metabolism*
  • Intracellular Signaling Peptides and Proteins / chemistry
  • Intracellular Signaling Peptides and Proteins / genetics
  • Intracellular Signaling Peptides and Proteins / metabolism*
  • Jurkat Cells
  • Mice
  • Mice, Mutant Strains
  • Models, Molecular
  • Mutation, Missense*
  • NF-kappa B / chemistry
  • NF-kappa B / genetics
  • NF-kappa B / metabolism*
  • Protein Binding / genetics
  • Protein Structure, Tertiary
  • Ubiquitin / genetics
  • Ubiquitin / metabolism*
  • Zinc Fingers

Substances

  • IKBKG protein, human
  • Intracellular Signaling Peptides and Proteins
  • NEMO protein, mouse
  • NF-kappa B
  • Ubiquitin
  • I-kappa B Kinase