Background and purpose: Hallmarks of vulnerable atherosclerotic plaques are inflammation that can be assessed with 18fluorine-fluorodeoxyglucose positron emission tomography/computed tomography, and increased neovascularization that can be evaluated by dynamic contrast-enhanced-MRI. It remains unclear whether these parameters are correlated or represent independent imaging parameters. This study determines whether there is a correlation between inflammation and neovascularization in atherosclerotic carotid plaques.
Methods: A total of 58 patients with transient ischemic attack or minor stroke in the carotid territory and ipsilateral carotid artery stenosis of 30% to 69% were included. All patients underwent positron emission tomography/computed tomography and dynamic contrast-enhanced-MRI of the carotid plaque. 18Fluorine-fluorodeoxyglucose standard uptake values with target/background ratio were determined. Neovascularization was quantified by the mean (leakage) volume transfer constant Ktrans. Spearman rank correlation coefficients between target/background ratio and Ktrans were calculated.
Results: Images suitable for further analysis were obtained in 49 patients. A weak but significant positive correlation between target/background ratio and mean Ktrans (Spearman ρ=0.30 [P=0.035]) and 75th percentile Ktrans (Spearman ρ=0.29 [P=0.041]) was found.
Conclusions: There is a weak but significant positive correlation between inflammation on positron emission tomography/computed tomography and neovascularization as assessed with dynamic contrast-enhanced-MRI. Future studies should investigate which imaging modality has the highest predictive value for recurrent stroke, as these are not interchangeable.
Clinical trial registration url: http://www.clinicaltrials.gov. Unique identifier: NCT00451529.
Keywords: atherosclerosis; imaging; inflammation; magnetic resonance imaging; neovascularization; plaque, atherosclerotic; positron-emission tomography; vascular diseases.