How the immune system senses aeroallergens and triggers an aberrant inflammation is poorly understood. Dectin-2 is a house dust mite (HDM)-sensing pattern recognition receptor. In a 3-week mouse model of repeated intranasal HDM challenge, anti-Dectin-2 potently attenuated the characteristic allergic inflammation and airway hyper-responsiveness. Anti-Dectin-2 also prevented neutrophil influx following a single HDM challenge. Interestingly, cysteinyl leukotrienes, but not chemokine and cytokine levels were inhibited by anti-Dectin-2 in this acute model, and in ex vivo challenge of cultured alveolar macrophages with HDM. Furthermore in the single-challenge model, zileuton, an inhibitor of leukotriene production, produced a similar effect as Dectin-2 blockade. Together these data suggest alveolar macrophage sensing of HDM by Dectin-2 elicits the production of cysteinyl leukotrienes, and this axis is key for the initiation of airway inflammation to this aeroallergen. Finally, we found Dectin-2-positive infiltrating cells present in bronchial biopsies from asthmatic subjects.