TP53 is the most commonly mutated gene in human cancers. Approximately 90% of mutations in this gene are localized between domains encoding exons 5 to 8. The aim of this investigation was to examine the ability of the low density DNA microarray with the assistance of double tandem hybridization platform to characterize TP53 mutational hotspots in exons 5, 7, and 8 of the TP53. Nineteen capture probes specific to each potential mutation site were designed to hybridize to specific site. Virtual hybridization was used to predict the stability of hybridization of each capture probe with the target. Thirty-three DNA samples from different sources were analyzed for mutants in these exons. A total of 32 codon substitutions were found by DNA sequencing. 24 of them a showed a perfect correlation with the hybridization pattern system and DNA sequencing analysis of the regions scanned. Although in this work we directed our attention to some of the most representative mutations of the TP53 gene, the results suggest that this microarray system proved to be a rapid, reliable, and effective method for screening all the mutations in TP53 gene.
Keywords: TP53 gene; oligonucleotide microarray; point mutations.