Constraint on 0νββ matrix elements from a novel decay channel of the scissors mode: the case of 154Gd

Phys Rev Lett. 2013 Oct 25;111(17):172501. doi: 10.1103/PhysRevLett.111.172501. Epub 2013 Oct 23.

Abstract

The nucleus (154)Gd is located in a region of the nuclear chart where rapid changes of nuclear deformation occur as a function of particle number. It was investigated using a combination of γ-ray scattering experiments and a γγ-coincidence study following electron capture decay of (154)Tb(m). A novel decay channel from the scissors mode to the first excited 0(+) state was observed. Its transition strength was determined to B(M1;1(sc)(+)→0(2)(+))=0.031(4)μ(N)(2). The properties of the scissors mode of (154)Gd imply a much larger matrix element than previously thought for the neutrinoless double-β decay to the 0(2)(+) state in such a shape-transitional region. Theory indicates an even larger effect for (150)Nd.