Puberty is a critical period of development during which the reemergence of gonadotropin-releasing hormone secretion from the hypothalamus triggers a cascade of hormone-dependent processes. Maturation of specific brain regions including the prefrontal cortex occurs during this window, but the complex mechanisms underlying these dynamic changes are not well understood. Particularly, the potential involvement of epigenetics in this programming has been under-examined. The epigenome is known to guide earlier stages of development, and it is similarly poised to regulate vital pubertal-driven brain maturation. Further, as epigenetic machinery is highly environmentally responsive, its involvement may also lend this period of growth to greater vulnerability to external insults, resulting in reprogramming and increased disease risk. Importantly, neuropsychiatric diseases commonly present in individuals during or immediately following puberty, and environmental perturbations including stress may precipitate disease onset by disrupting the normal trajectory of pubertal brain development via epigenetic mechanisms. In this review, we discuss epigenetic processes involved in pubertal brain maturation, the potential points of derailment, and the importance of future studies for understanding this dynamic developmental window and gaining a better understanding of neuropsychiatric disease risk.
Keywords: adolescence; brain maturation; epigenetics; puberty; sex differences.
Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.