Redox responses associated with the heme prosthetic group in a myoglobin-polymer surfactant solvent-free liquid are investigated for the first time in the absence of an electrolyte solution. Cyclic voltammograms from the biofluid exhibit responses that are consistent with planar diffusion of mobile charges in the melt. Temperature-dependent dynamic electrochemical and rheological responses are rationalized in terms of the effective electron hopping rate between heme centers and the transport of intrinsic ionic species in the viscous protein liquid.