Objective: Serum amyloid A (SAA) is an acute phase response protein and has apolipoprotein properties. Since type 2 diabetes is associated with chronic subclinical inflammation, the objective of this study is to investigate the changes in SAA level in type 2 diabetic patients and to evaluate the relationship between SAA and the capacity of serum to induce cellular cholesterol efflux via the two known cholesterol transporters, scavenger receptor class B type I (SR-BI) and ATP-binding cassette transporter G1 (ABCG1).
Methods: 264 patients with type 2 diabetes mellitus (42% with normoalbuminuria, 30% microalbuminuria, and 28% proteinuria) and 275 non-diabetic controls were recruited. SAA was measured by ELISA. SR-BI and ABCG1-mediated cholesterol efflux to serum were determined by measuring the transfer of [(3)H]cholesterol from Fu5AH rat hepatoma cells expressing SR-BI and from human ABCG1-transfected CHO-K1 cells to the medium containing the tested serum respectively.
Results: SAA was significantly increased in diabetic patients with incipient or overt nephropathy. Both SR-BI and ABCG1-mediated cholesterol efflux to serum were significantly impaired in all three groups of diabetic patients (p < 0.01). SAA inversely correlated with SR-BI-mediated cholesterol efflux (r = -0.36, p < 0.01) but did not correlate with ABCG1-mediated cholesterol efflux. Stepwise linear regression analysis showed that HDL, the presence or absence of diabetes, and log(SAA) were significant independent determinants of SR-BI-mediated cholesterol efflux to serum.
Conclusion: SAA was increased in type 2 diabetic patients with incipient or overt nephropathy, and SAA was associated with impairment of SR-BI-mediated cholesterol efflux to serum.
Keywords: ATP-binding cassette transporter G1; Cellular cholesterol efflux; High density lipoprotein; Reverse cholesterol transport; Scavenger receptor class B type I; Serum amyloid A.
Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.