The Src-family tyrosine kinases (SFKs) are oncogenic enzymes that contribute to the initiation and progression of many types of cancer. In normal cells, SFKs are kept in an inactive state mainly by phosphorylation of a consensus regulatory tyrosine near the C-terminus (Tyr(530) in the SFK c-Src). As recent data indicate that tyrosine modification enhances binding of metal ions, the hypothesis that SFKs might be regulated by metal ions was investigated. The c-Src C-terminal peptide bound two Fe(3+) ions with affinities at pH4.0 of 33 and 252μM, and phosphorylation increased the affinities at least 10-fold to 1.4 and 23μM, as measured by absorbance spectroscopy. The corresponding phosphorylated peptide from the SFK Lyn bound two Fe(3+) ions with much higher affinities (1.2pM and 160nM) than the Src C-terminal peptide. Furthermore, when Lyn or Hck kinases, which had been stabilised in the inactive state by phosphorylation of the C-terminal regulatory tyrosine, were incubated with Fe(3+) ions, a significant enhancement of kinase activity was observed. In contrast Lyn or Hck kinases in the unphosphorylated active state were significantly inhibited by Fe(3+) ions. These results suggest that Fe(3+) ions can regulate SFK activity by binding to the phosphorylated C-terminal regulatory tyrosine.
Keywords: Calcium; Ferric; Iron; Kinase; Phosphotyrosine.
Copyright © 2013 Elsevier B.V. All rights reserved.