Purpose: To define K(trans) and fractional anisotropy (FA) thresholds in correlation to histology for improved magnetic resonance imaging (MRI) tumor assessment in an animal model of brain glioma.
Methods: Twelve rats underwent 4.7 T MRI at day 10 after tumor implantation. Anatomical scans (T2, T1 at 8 min after double dose contrast application) as well as dynamic contrast-enhanced (DCE) imaging with calculation of K(trans) and diffusion tensor imaging (DTI) with calculation of FA were performed. T2- and T1-derived tumor volumes were calculated and thresholds for K(trans) and FA were defined for best MRI tumor assessment correlated to histology.
Results: Tumor volumes were 159 ± 14 mm(3) (histology), 126 ± 26 mm(3) (T1 with contrast, r=0.76), and 153 ± 12 mm(3) (T2, r=0.84), respectively. K(trans)- and FA-derived tumor volumes were 160 ± 16 mm(3) (for K(trans ≥ 0.04 min(-1), r=0.94), and 159 ± 14 mm(3) (for FA £0.14, r=0.96), respectively.
Conclusions: DCE-MRI and DTI with calculation of K(trans) and FA maps allow very precise brain glioma assessment comparable to histology if established thresholds for the given tumor model are used.