Background aims: In patients receiving peritoneal dialysis, fungal or yeast peritonitis has a poor prognosis. In rat peritoneum with mechanical scraping, severe peritonitis can be induced by zymosan, a component of yeast (Zy/scraping peritonitis). Administration of rat adipose tissue-derived stromal cells (ASCs) potentially can improve several tissue injuries. The present study investigated whether rat ASCs could improve peritoneal inflammation in Zy/scraping peritonitis.
Methods: Rat ASCs were injected intraperitoneally on a daily basis in rats with Zy/scraping peritonitis.
Results: Peritoneal inflammation accompanied by accumulation of inflammatory cells and complement deposition was suppressed by day 5 after injection of rat ASCs. The peritoneal mesothelial layer in Zy/scraping peritonitis with rat ASC treatment was restored compared with the peritoneal mesothelial layer without rat ASC treatment. Injected rat ASCs co-existed with mesothelial cells in the sub-peritoneal layer. In vitro assays showed increased cellular proliferation of rat mesothelial cells combined with rat ASCs by co-culture assays, confirming that fluid factors from rat ASCs might play some role in facilitating the recovery of rat mesothelial cells. Hepatocyte growth factor was released from rat ASCs, and administration of recombinant hepatocyte growth factor increased rat mesothelial cell proliferation.
Conclusions: Because the peritoneal mesothelium shows strong expression of membrane complement regulators such as Crry, CD55 and CD59, restoration of the mesothelial cell layer by rat ASCs might prevent deposition of complement activation products and ameliorate peritoneal injuries. This study suggests the therapeutic possibilities of intraperitoneal rat ASC injection to suppress peritoneal inflammation by restoring the mesothelial layer and decreasing complement activation in fungal or yeast peritonitis.
Keywords: adipose-derived stromal cells; complement; membrane complement regulators; peritoneal dialysis; peritonitis.
Copyright © 2014 International Society for Cellular Therapy. All rights reserved.