As a common psychiatric disorder in the growing geriatric population, late-life depression (LLD) has a negative impact on the cognitive, affective, and somatic domains of the lives of the elderly individuals. Accumulating evidence from the structural and functional imaging studies on LLD supports a "network dysfunction model" rather than a "lesion pathology model" for understanding the underlying biological mechanism in this mental disorder. In this work, we used network dysfunction model as a conceptual framework for reviewing recent neuroimaging findings in LLD. Our focus was on 4 major neurocircuits that have been shown to be involved in LLD: default mood network, cognitive control network, affective/frontolimbic network, and corticostriatal circuits. Findings of LLD-related gray and white matter structural abnormalities and resting-state and task-based functional changes were discussed for each network separately. We extended our review by summarizing the latest works that apply graph theory-based network analysis techniques for testing alterations in whole-brain network properties associated with LLD.
Keywords: late-life depression; neurocircuits; neuroimaging.