Ultra-deep pyrosequencing (UDPS) data treatment to study amplicon HCV minor variants

PLoS One. 2013 Dec 31;8(12):e83361. doi: 10.1371/journal.pone.0083361. eCollection 2013.

Abstract

We have investigated the reliability and reproducibility of HCV viral quasispecies quantification by ultra-deep pyrosequencing (UDPS) methods. Our study has been divided in two parts. First of all, by UDPS sequencing of clone mixes samples we have established the global noise level of UDPS and fine tuned a data treatment workflow previously optimized for HBV sequence analysis. Secondly, we have studied the reproducibility of the methodology by comparing 5 amplicons from two patient samples on three massive sequencing platforms (FLX+, FLX and Junior) after applying the error filters developed from the clonal/control study. After noise filtering the UDPS results, the three replicates showed the same 12 polymorphic sites above 0.7%, with a mean CV of 4.86%. Two polymorphic sites below 0.6% were identified by two replicates and one replicate respectively. A total of 25, 23 and 26 haplotypes were detected by GS-Junior, GS-FLX and GS-FLX+. The observed CVs for the normalized Shannon entropy (Sn), the mutation frequency (Mf), and the nucleotidic diversity (Pi) were 1.46%, 3.96% and 3.78%. The mean absolute difference in the two patients (5 amplicons each), in the GS-FLX and GS-FLX+, were 1.46%, 3.96% and 3.78% for Sn, Mf and Pi. No false polymorphic site was observed above 0.5%. Our results indicate that UDPS is an optimal alternative to molecular cloning for quantitative study of HCV viral quasispecies populations, both in complexity and composition. We propose an UDPS data treatment workflow for amplicons from the RNA viral quasispecies which, at a sequencing depth of at least 10,000 reads per strand, enables to obtain sequences and frequencies of consensus haplotypes above 0.5% abundance with no erroneous mutations, with high confidence, resistant mutants as minor variants at the level of 1%, with high confidence that variants are not missed, and highly confident measures of quasispecies complexity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cloning, Molecular
  • Drug Resistance, Viral / genetics
  • Genetic Variation
  • Hepacivirus / drug effects
  • Hepacivirus / genetics*
  • Hepacivirus / isolation & purification
  • Hepatitis C, Chronic / drug therapy
  • Hepatitis C, Chronic / virology
  • High-Throughput Nucleotide Sequencing / statistics & numerical data*
  • Humans
  • Mutation
  • Polymerase Chain Reaction
  • RNA, Viral / genetics*
  • Reproducibility of Results
  • Sequence Analysis, RNA / statistics & numerical data*
  • Viral Nonstructural Proteins / genetics

Substances

  • NS3 protein, hepatitis C virus
  • RNA, Viral
  • Viral Nonstructural Proteins
  • NS-5 protein, hepatitis C virus

Grants and funding

This study has been supported by CDTI (Centro para el Desarrollo Tecnológico Industrial), Spanish Ministry of Economics and Competitiveness (MINECO), IDI-20110115. It has also been supported by MINECO projects SAF 2009-10403, and also by the Spanish Ministry of Health Instituto de Salud Carlos III (FISS) projects PI10/01505. CIBERehd is funded by the Instituto de Salud Carlos III, Madrid. Work at CBMSO was supported by grant BFU2011-23604, FIPSE and Fundación Ramon.Areces. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.