The percentage of the dosing interval that the non-protein-bound plasma concentration is above the MIC (%fT>MIC) for cephalosporins has been shown to correlate with microbiological outcomes in preclinical studies. However, clinical data are scarce. Using data from a randomized double-blind phase 3 clinical trial, we explored the relationship of ceftobiprole exposure with microbiological and clinical outcomes in patients with nosocomial pneumonia. The individual ceftobiprole exposure was determined for different pharmacokinetic (PK)/pharmacodynamic (PD) indices using individual pharmacokinetic data and a previously published population model. The MICs used in the analysis were the highest MICs for any bacterium cultured at baseline or the end of treatment (EOT). Outcomes were microbiological cure at EOT and clinical cure at test of cure (TOC). Multiple logistic regression (MLR) and classification and regression tree (CART) analyses were applied to determine the relationships among exposure, patient characteristics, and outcomes. MLR indicated that the %fT>MIC of ceftobiprole was the best predictor for both microbiological eradication and clinical cure. CART analysis showed a breakpoint value of 51.1% (n = 159; P = 0.0024) for clinical cure, whereas it was 62.2% (n = 251; P < 0.0001) for microbiological eradication. Other factors also contributed, particularly to clinical outcome. These included the difference between VAP and non-VAP patients, systemic inflammatory response syndrome (SIRS), creatinine clearance, the use of anti-Pseudomonas combination therapy, and Acute Physiology and Chronic Health Evaluation II (APACHE-II) score. There is a strong correlation between microbiological eradication and clinical cure with exposure to ceftobiprole. The %fT>MIC required to result in a favorable clinical outcome is >51% of the dosing interval, which is in line with the values found for microbiological eradication, the comparator ceftazidime, and preclinical models.