Fumagillin (1), a meroterpenoid from Aspergillus fumigatus, is known for its antiangiogenic activity due to binding to human methionine aminopeptidase 2. 1 has a highly oxygenated structure containing a penta-substituted cyclohexane that is generated by oxidative cleavage of the bicyclic sesquiterpene β-trans-bergamotene. The chemical nature, order, and biochemical mechanism of all the oxygenative tailoring reactions has remained enigmatic despite the identification of the biosynthetic gene cluster and the use of targeted-gene deletion experiments. Here, we report the identification and characterization of three oxygenases from the fumagillin biosynthetic pathway, including a multifunctional cytochrome P450 monooxygenase, a hydroxylating nonheme-iron-dependent dioxygenase, and an ABM family monooxygenase for oxidative cleavage of the polyketide moiety. Most significantly, the P450 monooxygenase is shown to catalyze successive hydroxylation, bicyclic ring-opening, and two epoxidations that generate the sesquiterpenoid core skeleton of 1. We also characterized a truncated polyketide synthase with a ketoreductase function that controls the configuration at C-5 of hydroxylated intermediates.