Objective: The TGF-β pathway plays a central role in joint development with polymorphism in TGF-β pathway genes implicated in osteoarthritis susceptibility. One association is to rs12901499, within intron 1 of SMAD3. Since rs12901499 is not in linkage disequilibrium with a non-synonymous polymorphism, it is likely the association is operating by influencing expression of SMAD3.
Design: Using tissues from the joints of primary osteoarthritis patients who had undergone joint replacement we measured the overall expression of SMAD3 by quantitative real-time PCR. We also measured allelic expression of SMAD3 using these tissues and vascular smooth muscle cells from patients with aneurysms and osteoarthritis syndrome, a rare condition featuring early-onset osteoarthritis. We tested the functional effect of SNPs in vitro using luciferase assays and assessed association with osteoarthritis using a large osteoarthritis case-control dataset.
Results: We observed that genotype at rs12901499 did not correlate with overall SMAD3 expression or allelic expression. However, genotype at a 3'UTR SNP, rs8031440, did correlate with SMAD3 expression in cartilage (P = 0.005) which was supported by allelic expression data showing that the G allele correlated with decreased SMAD3 expression in joint tissues and vascular smooth muscle cells. This G allele was underrepresented in osteoarthritis cases vs controls (P = 0.027, odds ratio = 0.921). rs8031440 is in perfect linkage disequilibrium with five other SMAD3 3'UTR SNPs and our luciferase analysis identified rs3743342 and rs12595334 as being functional.
Conclusion: SMAD3 is subject to cis-acting regulatory polymorphism in the tissues of relevance to both primary osteoarthritis and the aneurysms-osteoarthritis syndrome.
Keywords: Allelic expression; Aneurysm; Genetics; Osteoarthritis; SMAD3; Susceptibility.
Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.