Crenolanib is a selective type I pan-FLT3 inhibitor

Proc Natl Acad Sci U S A. 2014 Apr 8;111(14):5319-24. doi: 10.1073/pnas.1320661111. Epub 2014 Mar 12.

Abstract

Tyrosine kinase inhibitors (TKIs) represent transformative therapies for several malignancies. Two critical features necessary for maximizing TKI tolerability and response duration are kinase selectivity and invulnerability to resistance-conferring kinase domain (KD) mutations in the intended target. No prior TKI has demonstrated both of these properties. Aiming to maximize selectivity, medicinal chemists have largely sought to create TKIs that bind to an inactive (type II) kinase conformation. Here we demonstrate that the investigational type I TKI crenolanib is a potent inhibitor of Fms tyrosine kinase-3 (FLT3) internal tandem duplication, a validated therapeutic target in human acute myeloid leukemia (AML), as well as all secondary KD mutants previously shown to confer resistance to the first highly active FLT3 TKI quizartinib. Moreover, crenolanib is highly selective for FLT3 relative to the closely related protein tyrosine kinase KIT, demonstrating that simultaneous FLT3/KIT inhibition, a prominent feature of other clinically active FLT3 TKIs, is not required for AML cell cytotoxicity in vitro and may contribute to undesirable toxicity in patients. A saturation mutagenesis screen of FLT3-internal tandem duplication failed to recover any resistant colonies in the presence of a crenolanib concentration well below what has been safely achieved in humans, suggesting that crenolanib has the potential to suppress KD mutation-mediated clinical resistance. Crenolanib represents the first TKI to exhibit both kinase selectivity and invulnerability to resistance-conferring KD mutations, which is unexpected of a type I inhibitor. Crenolanib has significant promise for achieving deep and durable responses in FLT3-mutant AML, and may have a profound impact upon future medicinal chemistry efforts in oncology.

Keywords: D835 mutations; activation-loop mutations; sorafenib.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology*
  • Benzimidazoles / chemistry
  • Benzimidazoles / pharmacology*
  • Cell Line, Tumor
  • Drug Resistance, Neoplasm
  • Humans
  • Molecular Docking Simulation
  • Mutation
  • Piperidines / chemistry
  • Piperidines / pharmacology*
  • fms-Like Tyrosine Kinase 3 / antagonists & inhibitors*
  • fms-Like Tyrosine Kinase 3 / chemistry
  • fms-Like Tyrosine Kinase 3 / genetics

Substances

  • Antineoplastic Agents
  • Benzimidazoles
  • Piperidines
  • FLT3 protein, human
  • fms-Like Tyrosine Kinase 3
  • crenolanib