Annexin A5 (Anx) has been extensively used for imaging apoptosis by single-photon emission computed tomography, positron emission tomography, optical imaging and MRI. Recently we introduced ultrasmall Anx-VSOP (very small iron oxide particles)--the smallest high-relaxivity probe for MRI of apoptosis. Here we present a simplified method for the direct coupling of Anx to VSOP, which resulted in nanoparticles that are nearly completely covered with human Anx. These superparamagnetic nanoparticles are only 14.4 ± 2.3 nm in diameter and have higher T2* relaxivity. Compared with existing probes, the small size and the Anx shielding provide prerequisites for good biocompatibility and bioavailability in target tissues. In vitro characterization showed specific binding of Anx-VSOP to apoptotic cells, which led to a signal loss in T2*-weighted MR measurements, while control probe M1324-VSOP produced no such change. Exploratory MRI was done in vivo in a cardiac model of ischemia-reperfusion damage illustrating the potential of the probe for future studies.
Keywords: Annexin A5; VSOP; apoptosis; magnetic resonance imaging; very small iron oxide particles.
Copyright © 2014 John Wiley & Sons, Ltd.